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Vectors



e a vector is a quantity with direction and magnitude

e a vector lists directional components
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Representing Vectors

struct vec {

int x, y;

};

X vec v = {x, y};



Manipulating Vectors
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int len() {
return sqrt(x*x + y*y);

}
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Vector Addition

vec add(vec v) {
return {x+v.x, y+v.y};

3




Scalar Multiplication



Scalar Multiplication



Scalar Multiplication



Scalar Multiplication

vec scale(int s) {
return vec{s*x, s*y};

}
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int dot(vec v) {

return x*v.x + y*v.X;
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Cross Product
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=X1Y2 — y1X2
7 int cross(vec v) {
2
return x*v.y - y*v.X;
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Cross Product Uses

the cross product describes orientation
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Cross Product Uses
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Lines




lines can be represented as a pair of vectors

— b +sm

. a vector for position
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. a vector for slope

e the vectors must be standardised in order to check for equality
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Representing Line Segments

- e a line segment can be
represented by a pair of
vectors

e pP1— Po gives a vector
representing the line
Po segments’ length and
direction
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Intersecting Line Segments

the cross product allows efficient checks for intersecting line
segments
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Intersecting Line Segments

the cross product allows efficient checks for intersecting line

segmen ts
P2 P1
P1 P3
Po P2
Po P3
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Polygons




Area of Polygons

calculating the area of a polygon can be simplified by triangulating
the polygon

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating
the polygon

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating
the polygon

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating

the polygon

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating

the polygon

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating
the polygon

the cross product is used to
determine the area

14



Area of Polygons

calculating the area of a polygon can be simplified by triangulating

the polygon

the cross product is used to
determine the area
e it returns the area of the
parallelogram with two
vectors common to each

triangle

14



Area of Polygons
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Area of Polygons

calculating the area of a polygon can be simplified by triangulating

the polygon

the cross product is used to
determine the area
e it returns the area of the
parallelogram with two
vectors common to each
triangle
e the area is signed depending

on orientation

n—2

2A(Q) = Z(Tf; — Po) X (Pit1 — Po)
i=1
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Optimising Area of Polygons

2A(Q) =

n—1

— —
Z Pi X Pit1
i=0

n—1
g XiYi+1 — Xi+1Yi
i=0

2A(Q) =

n—1

Z(Xi + Xi1) (Vie1 — ¥i)

i=0

2A(Q) =

ii5)



Optimising Area of Polygons

Pi X Bit1
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Constructing Convex Polygons - Graham Scan
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tructing Convex Polygons - Jarvi
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Linear Algebra




a vector lists directional components: x and y
e 1 = , j g
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a vector lists directional components: x and y

el

a vector is constructed by

scaling and adding basis
vectors

X ~ ~
— X1+ y)

2 and 7 can be grouped in a
A P 10

matrix [z ]} —
01
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Changing Basis Vectors
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vectors, any vector in a
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Changing Basis Vectors

e by changing the basis
vectors, any vector in a
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Matrix Multiplication

these transformations are applied by multiplying a vector by a
transformation matrix
a c| |x ax + cy
_>
b d| |y bx + dy
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